All functions

IsoXshift()

IsoXShift: Data-adaptive discovery of minimal interventions in a mixed exposure that efficiently result in a target outcome.

NHANES_eurocim

NHANES 2001-2002, POP Exposure on Telomere Length

NIEHS_data_1

Data 1 from the NIEHS mixtures workshop

bound_precision()

Bound Precision

bound_propensity()

Bound Generalized Propensity Score

calc_CIs()

Calculate Confidence Interals

calc_basis_freq()

Calculate the frequency basis functions are used in the folds

calc_final_effect_mod_param()

Calculates the Effect Modification Shift Parameter

calc_final_ind_shift_param()

Calculates the Individual Shift Parameter

calc_final_joint_shift_param()

Calculates the Joint Shift Parameter

calc_intxn_results()

Calculates the Interaction Parameter

calc_joint_results()

Calculate the Joint Parameter

calc_mediation_param()

Calculates the Mediation Shift Parameters

calc_pooled_em_shifts()

Compute the Pooled Shift Parameter Estimate From the Fold Specific Results For the Effect Modification Parameter

calc_pooled_indiv_shifts()

Compute the Pooled Shift Parameter Estimate From the Fold Specific Results

calc_pooled_intxn_shifts()

Compute the Pooled Interaction Shift Parameter Estimate From the Fold Specific Results

calc_pooled_joint_med_shifts()

Compute the Pooled Joint Mediation Shift Parameter Estimate From the Fold Specific Results

calc_pooled_med_shifts()

Compute the Pooled Mediation Shift Parameter Estimate From the Fold Specific Results

calc_pvals()

Calculate the p-values based on variance of the influence curve

calculatePooledEstimate()

Calculates the Inverse Variance Pooled Estimate Including Null Folds

create_cv_folds()

Stratified CV to insure balance (by one grouping variable, Y)

create_sls()

Create default Super Learner estimators for the data adaptive and nuisance parameters used in IsoXshift

eif()

Compute the Shift Parameter Estimate and the Efficient Influence Function

est_Q_w_shifted_mediation()

Estimate the Outcome Mechanism with Shifted A and Z

est_hn()

Estimate Auxiliary Covariate of Full Data Efficient Influence Function

est_samp()

Estimate Probability of Censoring by Two-Phase Sampling

estimate_mediator()

Estimate the Mediator Mechanism

extract_vars_from_basis()

Extract variables from the basis function search

find_min_concentrations()

Data adaptively discover the shift interventions that require minimal change to achieve target outcome

fit_basis_estimators()

Fit the Zeta Learner: A Highly Flexible Estimator Using Splines or Basis Functions

fit_fluctuation()

Fit One-Dimensional Fluctuation Model for Updating Initial Estimates

indiv_stoch_shift_est_Q()

Estimate the Outcome Mechanism

indiv_stoch_shift_est_g_exp()

Estimate the Exposure Mechanism via Generalized Propensity Score for One Exposure Variable

joint_shift_additive()

Joint Shift Additive Modified Treatment Policy

joint_stoch_shift_est_Q()

Estimate the Outcome Mechanism

joint_stoch_shift_est_g_exp()

Estimate the Exposure Mechanism via Generalized Propensity Score for Two Exposure Variable

list_rules_party()

Get rules from partykit object in rule fitting

mc_integrand_q_g_r()

Compute the Monte Carlo integrand for double integration in IsoXshift

quad_integrand_q_g_r()

Integrand Function for Q, g, r Model Adaptive Quadrature Double Integration in IsoXshift

scale_to_original()

Transform values from the unit interval back to their original scale

scale_to_unit()

Transform values by scaling to the unit interval

shift_additive()

Simple Additive Modified Treatment Policy

simulate_complicated_mediation_data()

DGP for testing IsoXshift with mediation (complicated!)

simulate_data()

DGP for testing IsoXshift without mediation

simulate_mediation_data()

DGP for testing IsoXshift with mediation

tmle_exposhift()

Targeted Minimum Loss Estimate of Counterfactual Mean under Stochastic Shift Intervention